

LA-UR-15-27387

Approved for public release; distribution is unlimited.

Title: Evaluation of PRZ in FLAG

Quirk, James J. Meyer, Chad D. Author(s):

Intended for: PEM/HE L2 Milestone

Issued: 2015-09-22

Evaluation of PRZ in FLAG

PEM/HE L2-Milestone 2015

James Quirk & Chad Meyer

XCP-4 Methods & Algorithms Los Alamos National Laboratory Los Alamos, NM 87545

September 24, 2015

Outline

- Verification: is FLAG's PRZ implemented correctly?
 - Examine piston-driven ZND wave
 - introduce some practical considerations
 - introduce length scales
 - check P-T and P-RHO closures
 - check mesh convergence
- Evaluation: how well does FLAG's PRZ perform?
 - Revisit piston-driven ZND wave
 - show canonical errors of programmed burn
 - show sensitivity to initial conditions
 - Examine cylindrical detonation
 - show consequences of PRZ formulation
 - Examine slab, ratestick, and arcwave detonations
 - show interplay between PRZ and FLAG-hydro
- Summary: what have we learnt?

Is FLAG's PRZ implemented correctly?

- Check PRZ[7] detonation, for Davis wide-ranging EOS[8], against
 Zel'dovich von Neumann Döring steady, travelling-wave solution[4]
 - ► The minimum-entropy solution: an inert shock compresses state *O* to state *VN* then reaction proceeds to sonic-state *CJ*

► As with any programmed-burn method, there are complications which will be addressed later on

FLAG: some practical considerations

- There are six different ways to account for the detonation energy
 - moreover they are not all equivalent with one another

- Employ test harness to run through energy variations
 - ► Allows parameter studies via a templated FLAG input-deck
 - Fully automated to allow studies to be redone when required

FLAG: some practical considerations (contd.)

- PRZ is a programmed-burn methodology, it requires:
 - ▶ A burn-table, tb, to dictate when the reaction starts
 - A detonation-velocity-table, Dn, to dictate the reaction scaling $rate1, 2 \propto \left(\frac{Dn}{D_{CI}}\right)^{n1,n2}$; two rates to allow for fast/slow reactions
- The tb and Dn tables are computed independently of FLAG
 - ▶ The 1D tests here use analytic tables:

$$Dn = D_{CJ}; tb = \frac{x}{Dn}$$

- ▶ The 2D tests use tables computed via a body-fitted, DSD code
- ► The tables are read into FLAG using:

- The test harness employs two passes
 - ▶ Pass one: invoke FLAG to setup test-problem and dump geometry
 - ▶ Pass two: prepare tables and run FLAG on test-problem

PRZ: length scales

- ZND solutions can be obtained semi-analytically
 - ▶ Reduce problem to an ODE in λ and integrate $\lambda:0\to 1$
- PRZ mimics the length scales in a full reactive burn model
 - ► For PBX-9502: $38\mu m$ half-reaction; $\approx 2000\mu m$ burnout
 - ▶ Two calibrations for L2-milestone[2, 1]
 - one with a finite-reaction length, one without
 - differences near CJ point are not seen here

PRZ: length scales (contd.)

- Difference in PRZ calibrations visible near CJ point
 - ▶ Linear burnout for calibration L2-2015a[2] motivated by chemistry, but results in infinitely long reaction length

- implications for various thresholds and tolerances used by FLAG
- A detonation is a coupled hydrodynamic-reactive system
 - Numerical cut-offs at the CJ state affect wave speed

FLAG: check P-T/P-RHO closures

- As with a reactive burn model, PRZ requires a closure to partition energy between reactants and products
 - ► FLAG currently allows for both P-T and P-RHO closures
 - the L2 calibrations employed P-T equilibrium as P-RHO was not available in FLAG at the time they were done
- To verify FLAG: prescribe ZND solution and march one step
 - P-RHO closure is correct to 10 significant figures, but hard-wired tolerances in P-T solver are too coarse

FLAG: check P-T/P-RHO closures (contd.)

- The P-T closure is computationally more involved than P-RHO
 - ▶ It involves a nested solve that can fail to converge
- Tightening FLAG's tolerances allows this test to be passed
 - ► Compiled custom code with: abs_error=1e-9, rel_error=1e-12

- Observe sporadic warnings that P-T solve has not converged
 - ► Further investigation needed

ZND: check mesh convergence

- A mesh convergence study, repeatedly halving dx from $400\mu m$ to $6.25\mu m$, shows PRZ is implemented correctly
 - done for three PBX-9502 calibrations[2, 1, 8]
 - done for both P-T and P-RHO closures
 - done for four of FLAG's six energy input-variations
 - ▶ 168 cases in total (7 x 3 x 2 x 4)
- Visual check for $dx = 6.25 \mu m$, calibration[1], P-T closure, and e0_2

ZND: check mesh convergence (contd.)

- Programmed-burn is intended to be run on coarse meshes[6]
 - outside of the asymptotic range of the PRZ model

ZND: check mesh convergence (contd.)

- Formal error norms are not presented here
 - ▶ They are misleading in the context of programmed-burn
 - for $dx > 50 \mu m$ the details of the calibration are lost
 - Computational errors vary with the run length of the detonation
 - synchronization errors are slowly evolving and can be missed when the run length is too short
 - would need to present norms at $1, 10, 100, \dots \mu s$
 - Local errors tend to dominate the norm
 - a numerical cut-off at the CJ point can be troublesome
 - Errors are often glaring
 - footing when the burn-table is too fast
 - flat-top when the burn-table is too slow
 - ▶ FLAG's evolution of λ is known to be weak
 - two forward-Euler integrations, with a half-time step, are used
 - should migrate to predictor-corrector or two-stage Runge-Kutta

How well does FLAG's PRZ perform?

- As with any programmed-burn method, PRZ does not model the coupling found in a real detonation
 - Synchronization of the reaction with the hydro is always an issue
 - no mechanism to maintain synchronization
 - need to check what happens when the burn table is too fast
 - need to check what happens when the burn table is too slow
 - ▶ The initial conditions used to start a simulation are problematic
 - no mechanism to grow a detonation from nothing
 - therefore must prescribe an initial detonation profile
 - or play tricks with the burn table to obtain a lead shock
- PRZ is only as good as its burn table, which in turn is only as good as the Dn-Kappa calibration
 - ► EOS parameters, PRZ parameters, and Dn-Kappa parameters have to be consistent
 - users are not free to pick-and-mix

Canonical-error: burn table is too fast

- When the burn table is too fast:
 - ► Shock-less burning will appear ahead of the detonation i.e. footing

- ▶ Wilkins's traditional programmed-burn is by design *shock-less*[6]
 - this is achieved via the EOS modification $e = e(\rho, P/\lambda, \lambda)$
 - but on coarse grids computations appear to involve a shock

Canonical-error: burn table is too slow

- When the burn table is too slow:
 - ▶ A shock runs ahead of the reaction region, resulting in a *flat-top*

- ► An argument can be made for biasing a PRZ burn-table to be on the slow side, so as to avoid *footing*
 - but is the cure worse than the disease?

Initial conditions are problematic

- The ZND test can be repeated using just quiescent initial conditions, with a delay in the burn-table
 - ▶ Shock-less burning is observed when the delay is less than $0.28\mu s$

UNCLASSIFIED

Initial conditions are problematic (contd.)

- The ZND test can be repeated using just quiescent initial conditions, with a delay in the burn-table
 - A *flat-top* is observed when the delay is greater than $0.28\mu s$

- Biasing a burn table to be too slow provides a simple means of avoiding shock-less burning
 - Requiring users to initialise with a ZND profile is likely a non-starter
 - ▶ A delay of $0.28\mu s$ corresponds to 2.18mm
 - lacktriangle The delay for a CJ-blob as initial conditions is $0.1 \mu s$

Cylindrical detonation

- The motivation for DSD[3, 5] is that curved detonations propagate at appreciably slower speeds than the CJ velocity dictated by 1D theory †
 - ▶ The assumed formulation for $Dn(\kappa)$ is:

$$\frac{D_n}{D_{CJ}} = 1 + A \left[(C_1 - \kappa)^{E_1} - C_1^{E_1} \right] - B \kappa \frac{(1 + C_2 \kappa^{E_2} + C_3 \kappa^{E_3})}{(1 + C_4 \kappa^{E_4} + C_5 \kappa^{E_5})}$$

► The calibration for PBX-9502[5] can be integrated to get tb and Dn tables so as to test PRZ on a cylindrically expanding detonation

[†]The DSD theory is strictly only valid for positive curvature

Cylindrical detonation: early time convergence

- A mesh convegence study, repeatedly halving dx from $400\mu m$ to $12.5\mu m$, shows PRZ is prone to give shockless burning
 - ► The *footing* is most prounounced in the lower-right plot
 - all the results here are for $t = 3\mu s$

Cylindrical detonation: evolution

- The numerical evidence is that even when a shock is present at early-time, PRZ will gravitate to shockless burning at late-time
 - ▶ The amount of shock-less burning increases with time
 - all the results here are for $dx = 50 \mu m$

Cylindrical detonation: PRZ vs. PB

- PB, with LUND, propagates a cylindrical detonation at constant speed, which is physically unrealistic and overpredicts the front position
 - But unlike DSD-PRZ, LUND-PB is not prone to shockless burning
 - what is happening with PRZ?

UNCLASSIFIED

Cylindrical detonation: a PRZ weakness

PRZ has the wrong functional form to maintain the lead shock

From the Dn-Kappa curve, Dn increases with radius, $(Dn)^{n1,n2}$

but PRZ has
$$rate1, 2 \propto \left(\frac{Dn}{D_{CJ}}\right)^{n1}$$

 a particle engulfed at radius, r, burns more slowly than one engulfed at, r + dr, and so shockless burning is inevitable

Cylindrical detonation: how to fix PRZ?

- For reactive-burn models it is common to employ a pressure threshold to prevent burning in the numerically-smeared, lead shock
 - ► This approach prevents PRZ from giving shockless burning
 - at the cost of circumventing the tb table i.e. lighting is dictated by the hydro with the reaction-rate scaled via the Dn table

Slab detonation

- DSD-PRZ simulations have been performed in FLAG for an 8mm slab of PBX-9502[5], with the three available calibrations[8, 2, 1]
 - ▶ Pressure results for calibration[1] with $dx = 50\mu m$
 - reflected shocks arise because FLAG does not have an outflow-BC

Slab detonation: zoom of the front

- Qualitatively the results are the same for all three calibrations
 - Unlike Lund programmed-burn, the detonation front is curved

Slab detonation: evolution along centreline

- The burn-table employs a Dn-Kappa curve calibrated to experiment[5]
 - ► The *validation* of the DSD-PRZ methodology hinges on whether the FLAG hydro can remain synched with the burn-table
 - results at $dx = 50 \mu m$ indicate a *flat-top* error

Slab detonation: proportioning of errors

- Further investigation is needed to proportion the error
 - ▶ DSD vs. PRZ vs. FLAG vs. mesh resoluton vs. . . .
 - Compared to the cylindrical case shockless burning is inhibited because Dn reaches steady state
 - but it could reappear for fine mesh simulations

Ratestick detonation

- DSD-PRZ simulations have been performed in FLAG for a 16mm diameter ratestick of PBX-9502, with the three calibrations[8, 2, 1]
 - ▶ Pressure results for calibration[1] with $dx = 100 \mu m$
 - reflected shocks arise because FLAG does not have an outflow-BC

Ratestick detonation: zoom of the front

- Qualitatively the results are the same for all three calibrations
 - Simulation done for half-plane only then drawn reflected

Ratestick detonation: evolution along centreline

- The burn-table employs a Dn-Kappa curve calibrated to experiment[5]
 - ► The *validation* of the DSD-PRZ methodology hinges on whether the FLAG hydro can remain synched with the burn-table
 - results at $dx=100\mu m$ are non monotone

Ratestick detonation: evolution off centreline

- Pressure evolution at a radius of 4mm does not exhibit the non-monotonicty seen on the centreline
 - ► There may be an issue with FLAG's handling of the axis of symmetry
 - pressure plot at t = 0 lies outside initiation blob and can be ignored

Ratestick detonation: proportioning of errors

- Further investigation is needed to proportion the error
 - ▶ DSD vs. PRZ vs. FLAG vs. mesh resoluton vs. ...
 - Compared to the cylindrical case shockless burning is inhibited because Dn reaches steady state
 - but it could reappear for fine mesh simulations

Arcwave detonation

- DSD-PRZ simulations have been performed in FLAG for an arcwave[†] of PBX-9502[3], with the three calibrations[8, 2, 1]
 - Pressure results for calibration[1] with $dx = 100 \mu m$
 - reflected shocks arise because FLAG does not have an outflow-BC

[†]The arcwave has 6.5mm inner radius and 9mm outer radius

UNCLASSIFIED

Arcwave detonation: zoom of the front

- Qualitatively the results are the same for all three calibrations
 - Observe how the front pressure increases from inner to outer radius

Arcwave detonation: evolution along inner arc

- The burn-table employs a Dn-Kappa curve calibrated to experiment[5]
 - ► The *validation* of the DSD-PRZ methodology hinges on whether the FLAG hydro can remain synched with the burn-table
 - ullet results at $dx=100 \mu m$ are non monotone, but hint at a flat-top

Arcwave detonation: evolution along mid arc

- The profiles for the mid-arc are monotone
 - ▶ The plots for $t = 20\mu s$ and $t = 25\mu s$ are suspicious
 - the processing of FLAG's vardumps is non-trivial and may be buggy: further investigation is required

Arcwave detonation: evolution along outer arc

- The profiles for the outer-arc are non-monotone, perhaps due to FLAG's treatment of the material interface at the boundary
 - ▶ Again the plots for $t = 20\mu s$ and $t = 25\mu s$ are suspicious
 - The dropped- λ at $t=30\mu s$ is thought to be a FLAG bug

Arcwave detonation: proportioning of errors

- Further investigation is needed to proportion the error
 - ▶ DSD vs. PRZ vs. FLAG vs. mesh resoluton vs. . . .
 - Compared to the cylindrical case shockless burning is inhibited because Dn reaches steady state
 - but it could reappear for fine mesh simulations

Summary: what have we learnt?

- PRZ has been implemented correctly in FLAG
 - Although there is room for improvement in FLAG's P-T closure
 - Reliability will vary depending on the specific PRZ parameter set
 - the infinite reaction length calibration[2] falls foul of FLAG's default tolerances/thresholds
- PRZ formulation is prone to introduce shockless burning
 - ▶ More likely the higher the mesh resolution
 - Strong tendency for a cylindrical detonation
 - ▶ Inhibited for slab, ratestick, and arcwave
 - Modified/alternative PRZ formulations should be explored
- PRZ simulations in 2D should be considered preliminary
 - ► Higher resolution needed to determine limiting numerical behaviour
 - Interactions with FLAG's hydro, especially at material interfaces, is complex and requires further investigation
- PRZ, despite its mathematical shortcomings, may be an acceptable engineering-tool in FLAG for user applications

References |

 T.D. Aslam.
 PRZ calibration for PBX 9502 – finite reaction zone (PBX9502/L2-2015b).
 Technical Report LA-UR-15-27203, 2015.

 T.D. Aslam.
 PRZ calibration for PBX 9502 – infinite reaction zone (PBX9502/L2015a).
 Technical Report LA-UR-15-27335, 2015.

- [3] J.B. Bdzil, T.D. Aslam, R. Henninger, and J.J. Quirk. High-explosives performance. Los Alamos Science, (28):96–110, 2003.
- [4] W. Fickett and W.C. Davis. Detonation: Theory and Experiment. Dover books on physics. Dover Publications, 2000.

References II

- [5] S.I. Jackson and M. Short. Scaling of detonation velocity in cylinder and slab geometries for ideal, insensitive, and non-ideal explosives. *Journal of Fluid Mechanics*, 773:224–266, 2015.
- [6] A.K. Kapila, B. Bdzil, and D.S. Stewart. On the structure and accuracy of programmed burn. Combustion Theory and Modelling, 10(2):289–321, 2006.
- [7] B.L. Wescott. Development of a generalized pseudo-reaction zone model for non-ideal explosives and application to anfo. Technical Report LA-UR-06-8661, 2006.
- [8] B.L. Wescott, D.S. Stewart, and W.C. Davis. Equation of state and reaction rate for condensed-phase explosives. *Journal of applied physics*, 98(5):053514, 2005.

